

GPRS Dimensioning and Performance Workshop

GPRS Radio Network Configuration

Scope of this Module

GPRS Radio Network Configuration

- Physical Channel Structure
- Cell Re-Selection
- GPRS Channel Allocation
- Radio Network Features
- Cell planning
- GPRS Cell Parameters and BSC Properties and SGSN Parameters
- EGPRS Radio Network Enhancements in R9.1

GPRS Radio Network Configuration

Part 1: Physical Channel Structure

The packet data radio channels

ERICSSON 💋

Packet Data Logical Channels

- PBCCH broadcast of system information (DL)
- PCCCH –common control signalling
 - PRACH uplink packet transfer initiation (UL)
 - PAGCH resource assignemnt (DL)
 - PPCH paging for either PS or PS&CS (DL)
 - PNCH PTM M, Multicast (DL)
- PDCCH
 - PACCH MS-specific signalization (UL & DL)
 - PTCCH/U MS-specific timing advance information (UL)
 - PTCCH/D timing advance information for group of MSs (DL)
- PDTCH end-user data traffic
 - PDTCH/U end-user traffic in uplink direction (UL)
 - PDTCH/D end-user traffic in downlink direction (DL)

Mapping of Logical Packet Data Channels onto the Physical Channels

1 timeslot = 156.25 bit duration (~0,577 ms)

Used by <u>almost</u> all channels

TB	Encrypted Bits	Flag	Training Sequence	Flag	Encrypted Bits	TB	GP
3	57	1	26	1	57	3	8.25

Used by <u>PRACH, PTCCH and PCCH (only in some cases)</u> channels

TB	Synchronization Sequence	Encrypted Bits	TB	GP
8	41	36	3	68.25

GPRS Multi-Frame Structure

- One TDMA Frame (F) consists of 8 Time Slots (TS)
- 4 Consecutive TDMA Frames (F) are groupped into one TDMA Block (B)
- 12 Blocks + 2 Idle TDMA Frames+ 2 TDMA Frames used for PTCCH consisting 52 Multi-Frame structure

Multi-Frame= 12 Blocks + 2 Idle Frames + 2 PTCCH Frames= 52 Frames

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

GPRS Multi-Frame Structure (MPDCH)

- PBCCH is indicated on BCCH channel
- Different structure for UL/DL
- Mapping of channels are controlled by PBCCH parameters
- In downlink case first blocks can be reserved for PRACH, other are used for PDTCH and PACCH channels

MPDCH mapping – DL example

GPRS Multi-Frame Structure (PDTCH)

- Very similar in UL and DL
- Almost all Blocks used for PDTCH & PACCH
- Idle and PTCCH can be used for signal measurements and BSIC identification

PDTCH mapping – UL/DL example

Radio Block Structure

456 bits

▲					
MAC Header	RLC Header	RLC Data	BCS		

Radio Block Structure - Coding

GPRS Channel Coding

Block Codec output - 3 USF bits included

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

Data Rate Calculation (RLC Layer) 48 CS-1: 181 bits **CS-2:** 268 bits **CS-3:** 312 bits **CS-4:** 428 bits #GPRS TDMA frames'# Data bits in Radio Block CS 1-4 data rate? # Bursts?Total #TDMA frames?Duration of one TDMA frame Data rate: **CS-1:9,05kbps CS-2: 13,4 kbps** 52 4,615 ms **CS-3: 15,6 kbps** 4 **CS-4: 21,4 kbps**

GPRS Data Rate on RLC Layer

FAJ 121 056

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

GPRS Radio Network Configuration

Part 2: Cell (Re-)Selection

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

Radio Resources Operating Modes Definitions (Class B assumed)

- Class B Mobile is able to handle CS and PS Traffic but not at the same time
- Packet Switching Modes
 - Idle (TBF not established)
 - Transfer (TBF exists on one or more radio channels)
- Circuit Switching Modes
 - Idle (no RR connection)
 - Dedicated (RR exists)

Radio Resources Operating Modes & Transitions

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

RR Operating Modes and MM States

RR BSS	Packet transfer mode	Measurem. reception	No State	No State
RR MS	Packet transfer mode	Packet idle mode mode		Packet Idle Mode
MM (MS&SGSN)		Standby		

Different MS behavior with Packet BCCH

Without allocated PBCCH

The GPRS MS listen to the GSM **BCCH** and **PCH** •The GPRS MS will use the GSM CS **PCH**, **RACH** and **AGCH**

With allocated PBCCH

The GPRS MS reads SI on **BCCH** to find **PBCCH** •Now the GPRS MS only listens on **PBCCH** and **PPCH** •GPRS dedicated Packet System Information sent on **PBCCH** •The **PPCH**, **PRACH** and **PAGCH** are used

The **PBCCH** timeslot must be a dedicated **PDCH** in R8.

GPRS Cell (Re-)Selection Principles

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

GPRS Cell (Re-) Selection – No PBCCH used (I) C1 Parameter – Path Loss Criterion

GPRS Cell (Re-) Selection – No PBCCH used (II) C2 Parameter – Cell (Re-)Selection Criterion

GPRS Cell (Re-) Selection – No PBCCH used (III)

GPRS MS re-selects a new cell if any of the following criteria is satisfied:

- C1 for the serving cell falls below 0 for a 5 seconds
- C2 of non-serving cell exceeds C2 value of the serving cell for the period of 5 seconds.
- Serving cell becomes barred
- MS has unsuccessfully tried to access network the allowed number of times
- MS dettects a downlink signalling failure

GPRS Cell (Re-) Selection – PBCCH used

GPRS MS re-selects a new cell if any of the following criteria is satisfied:

- C1 for the serving cell falls below 0
- The best non-serving cell does have the highest value of C32 among:
 - All cells with the highest priority fulfilling C31 criterion
 - All cells, if no cells fulfill C31 criterion
- Serving cell becomes barred
- MS has unsuccessfully tried to access network the allowed number of times
- MS dettects a downlink signalling failure

GPRS cell reselection algorithm

GPRS Cell (Re-) Selection – PBCCH used (I) C1 Parameter – Path Loss Criterion

GPRS Cell (Re-) Selection – PBCCH used (II) C31 Signal Strength Treshold Criterion for HCS

GPRS Cell (Re-) Selection – PBCCH used (III) C31 Signal Strength Treshold Criterion for HCS

Applied Offset for the GPRS_PENALTY_TIME

$TO(n) = GPRS_TEMPORARY_OFFSET(n) *$ *H(GPRS_PENALTY_TIME(n)-T(n))

Period while GPRS_TEMPORARY_OFFSET is applied

Initiated from 0 when MS places carrier on the "top 6 list"

GPRS Cell (Re-) Selection – PBCCH used (IV) C32 Cell Ranking Criterion

C32(s) = C1(s)

$C32(n)=C1(n)+GPRS_RESELECT_OFFSET(n) - TO(n)*(1-L(n))$

Applies offset and hysteresis value to each cell

GPRS Radio Network Configuration

Part 3: GPRS Channel Allocation

Dedicated PDCH

- A timeslot, i.e. traffic channel, reserved for packet data traffic.
- A maximum of 8 dedicated PDCH per cell is possible.
- Timeslot 4 to 7 are used

On-demand PDCH

- A timeslot, i.e. traffic channel, temporary allocated for packet data traffic. Circuit switched traffic is prioritised, why pre-emption is possible.
- All but the timeslots used for BCCH and SDCCH can be allocated as on-demand PDCHs.

GPRS Network Modes

- Set per BSC with exchange property GPRSNWMODE.
 - 0 = Network Mode I. No master PDCH allowed.
 - 1 = Network Mode I. First dedicated PDCH in cell configured as master PDCH.
 - 2 = Network Mode II. No master PDCH allowed. Default.
 - 3= Network Mode III. First dedicated PDCH in cell configured as master PDCH.

Recommendation for using Packet BCCH or not (1)

When the GPRS traffic in the GPRS network becomes higher than neglectable - allocate a PBCCH.

Advantages

- Better possibilities to control GPRS MS (C31/C32)
- GPRS BA list available
- More capacity for PS paging, random access and access grant

Recommendation for Using Packet BCCH or not (2)

Initially the GPRS MS and network will have problems supporting NW mode 1 and 3. Therefore can no PBCCH be

allocated.

BSC Property

GPRSNWMODE=2

When NW mode 1 or 3 are supported and the GPRS traffic becomes higher than neglectable - allocate a PBCCH. (NW mode 1 is preferred.)

Cell Parameter

FPDCH?1

BSC Property

GPRSNWMODE=1 or 3

Reservation of Resources for Data Transfer

•The PDCHs can be shared between many users (8DL/6UL per PDCH))

- •A transmission from a user is called <u>TBF Temporary Block Flow</u>
- •The TBFs from users are queued in the PCU before sent.
- •Round Robin is used when sending data to more than one user on one timeslot.

•The maximum number of desired simultaneous TBFs on one PDCH is set by the cell parameters: TBFDLLIMIT and TBFULLIMIT.

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

Request for PS Resources

Request for PS Resource

1. PDCH-reservations on existing PDCH/PSET.

(PSET with at least 1 PDCH with less reservations than TBFLIMIT)

2. PDCH-allocation & reservations of a new PDCH/PSET. (On not complete PSET, an attempt is made to upgrade the PSET to four PDCH)

3. PDCH-reservation above TBFLIMIT on existing PDCH/PSET. (Maximum PDCH-reservations are DL=8, UL=6 per channel, 32 per PSET.)

4. PS Congestion.

Request for CS Resource

Request for CS Resource

- 1. Allocate free resource from CSD
- 2. Allocate free resource from CSD, marked for PS
- 3. Pre-emption. Allocate resource from PSD, On-demand idle PDCH
- 4. Pre-emption. Allocate resource from PSD, On-demand in use PDCH
- 5. CS congestion

PS Resource Request Examples

What happens when a request from a 3-TS GPRS terminal is received in the figure above?

- 1. PSET is OK since TS1 has TBF<TBFLIMIT
- 2. Use the least loaded TS. I.e. TS 0->2
- 3. All TS have TBF>=TBFLIMIT => PDCH-allocation for coming TBFs

NOTE:

A GPRS terminal can be assigned less TS/PDCH than requested.

If no PDCH can be assigned the request is rejected.

Dedicated or on-demand Packet Data CHannels Using dedicated PDCH's

Advantages

- increase throughput (decrease the user perceived delay)
- secure incessant GPRS traffic in each cell
- save BSC CPU capacity
- allow use of PBCCH

Disadvantages

less capacity for speech traffic

More dedicated GPRS channels? Less delay

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

Recommendation for Dedicated or on-demand PDCH

Secure GPRS capacity in cells with congestion by dedicating PDCHs and hereby avoiding low GPRS performance.

FPDCH: No of dedicated PDCH in the cell

Cell Parameter FPDCH =0 to 8

GPRS Radio Network Configuration

Part 4: Radio Network Features

Radio Network Features

GPRS support in R8:

- Cell Selection/Reselection (automatic parameter mapping)
- Frequency Hopping
- MS Power Control (GPRS specific)
- Idle Channel Measurements (at PSET and PDCH allocation)
- Hierarchical Cell Structure
- GPRS is supported in underlaid cells
- Extended Range SW support single slot GPRS (RBS2000)
- Multiband Operation
- GPRSPRIO

Features Improving the GPRS Capacity in the Network

- Cell Load Sharing
- Other circuit switched RN features decreasing the network interference

No "Assignment to Worse Cell" for GPRS

The GSM feature "Assignment to Worse Cell" is not supported by GPRS.

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

GPRS in Overlaid/Underlaid Subcells

GPRS is only supported in the Underlaid Subcells.

GPRSPRIO Feature – Test Environment

- Real congested cell (2 TRUs)
- Three active GPRS users (FTP via Lap-top & GPRS mobile)
- Three settings of GPRSPRIO parameter:
 - GPRSPRIO=24 Only idle PDCH can be pre-empted
 - GPRSPRIO=8 Idle PDCH and non-TAI PDCH can be pre-empted
 - GPRSPRIO=0- <u>Any PDCH</u> can be pre-empted
- Each test GPRSPRIO setting was testing for 30 minutes
- Measurement samples were taken each 15 minutes
 - Average TCH load in Erlangs (TFTTRALACC/TFNSCAN)
 - Number of pre-emptions(PREEMPTPDCH)

Behaviour of GPRSPRIO Feature

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

Behaviour of GPRSPRIO Feature – GPRSPRIO=8

GPRS Radio Network Configuration

Part 5: Cell Planning

BLER as a function of C/I

C/I ? ? BLER ? ? Throughput ?

Data Throughput as a function of C/I

Throughput _{Erronous Link} = RLC data X (1-BLER)

GPRS Coverage

Application coverage in a speech network (~9 dB C/I @ 95%)

Cell plan optimized for speech 🖉 good GPRS coverage

General radio aspects

	Speech	GPRS	GPRS R8
Coverage	~ 9-12 dB	Set by CS-1 (~ 5-7 dB)	Set by CS-1 (~ 5-7 dB)
Service coverage	~ 9-12 dB	Depends on application (service)	Depends on application (service)
Low C/I (< 10 dB)	Poor quality / dropped call	Low throughput per channel (< 10 kbps)	Low throughput per channel (< 10 kbps)
Medium C/I (10-15 dB)	Good speech quality	High throughput per channel (11-15 kbps)	High throughput per channel (11-12 kbps)
High C/I (> 15 dB)	Good speech quality	Very high throughput per channel (> 15 kbps)	High throughput per channel (11-12 kbps)

Cell planning – an example

ZAGREB

SSM system:

36 carriers GSM-900 3/9 - reuse pattern - Frequency< hopping is assumed

Base stations

City center: 3 sites; 9 cells; 4 TRU/cells Other city areas: 17 sites; 51 cells; 4 TRU/cells

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

Frequency Planning (1)

Frequency Planning (2)

Interference load in two different networks when GPRS is implemented.

Will the interference exceed your network quality limit?

PDCH Activity for the Given PDCH Data Load

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

ERICSSON 💋

PDCH vs. TCH Interference Increase for the given PDCH Data Load

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

900 MHz versus 1800 MHz

Dependencies

- Coverage
- Capacity
- Number of frequencies
- Frequency reuse and C/I
- Network strategy

Method to control the GPRS traffic

Use cell parameter *CRO* to get offset between cells for C1/C2.

NOTE that the idle CS MS are also using C1/C2.

Use the feature Assignment to other cell for assigning CS MS to the correct cell.

Allocating non-hopping BCCH frequencies first or last

Dependencies

- Frequency hopping method used
- Reuse and C/I on BCCH frequencies
- Reuse and C/I on TCH frequencies

Cell Parameter

PDCHALLOC = <u>FIRST</u>/LAST/NOPREF

GPRS Radio Network Configuration

Part 6: GPRS Cell Parameters and BSC Properties and SGSN Parameters (for Radio)

GPRS Cell Parameters and BSC Properties R8

- An extensive number of GPRS parameters are available.
- The major part of the GPRS parameters are mapped from corresponding GSM CS parameters.
- The changeable parameters for GPRS R8 are therefore very few, leading to increased implementation speed and fewer mistakes.

Changeable Cell Parameters and BSC Properties R8

Parameter Name	Recommended	Range	Set per
GPRSSUP	YES	NO, YES	Cell
AGBLK	Network Depend.	0 - 1	Cell
FPDCH	0-4	0 - 8	Cell
PDCHALLOC	Network Depend.	first, last, no pref	Cell
GAMMA	Network Depend.	0 - 62 (even)	Cell
ALPHA	6	0 - 10	BSC
GPRSNWMODE	2 (initially)	0 - 3	BSC
PILTIMER	10 - 20	1 - 3600	BSC
CHCODING	CS-2	CS-1, CS-2	BSC
ONDEMANDGPHDEV	20	1 - 256	BSC
TBFDLLIMIT	1-2	1 - 8	BSC
TBFULLIMIT	1-2	1 - 6	BSC
GPRSPRIO*	-	0-31	BSC

* With Octoplus package - AC-A05

GPRS MS Power Control

- The MS output power is regulated so that a desired signal strength is received in the BTS.
- The regulation can be made on each Radio Block
- The output power of the GPRS MS, is calculated for all allocated uplink PDCHs separately.
- The power, P in dBm, is given by the control formula:

 $P = min(P_{max}, GAMMA_0 - GAMMA - ALPHA(C + 48))$

 $GAMMA_0 = 39dBm$ for GSM900 cells

 $GAMMA_0 = 36dBm$ for GSM1800/1900 cells

GAMMA is a cell parameter for GPRS Dynamic MS Power Control. It is set to give a desired received signal strength at the BTS. ALPHA is a BSC parameter, decides the level of MS power reduction in relation to the path loss

C is the received SS at the GPRS MS

Parameter Settings - GAMMA

• GAMMA is a cell parameter for GPRS Dynamic MS Power Control. It is set to give a desired received signal strength at the BTS.

 $GAMMA = GAMMA_0 - (1 - ALPHA) P_{max} - ALPHA(P_{BTS} + SS_{des} + 48)$

 $P_{BTS} = BSPWRB$

SS des = should be correlated to the setting of SSDESUL for speech

Parameter Settings - ALPHA

- ALPHA is a BSC parameter for GPRS Dynamic MS Power Control. It is set between zero and ten but the setting corresponds to a decimal value (0.0, 0.1 .. 1).
- Decides the level of reduction of the MS output power in relation to the path loss
- Dynamic Aggressive settings: ALPHA should have a high value
- Recommended settings: ALPHA=6

Figure 1 GPRS MS output power with different ALPHA

Parameter settings - GAMMA Exercise

We have the following input values:

GSM 900	
$P_{max} =$	33dBm
$P_{BTS} =$	43dBm
$SS_{DES} =$	-80dBm
ALPHA=	6(0.6)

What will be the value of the cell parameter GAMMA?

SGSN Parameters (for Radio)

Parameter Name	Default	Range
T3314 ReadyTimer*	44 s	10-600 s
T3314 ReadyTimerMax	120 s	10-600 s
T3314 ReadyTimerMin	10 s	10-600 s
Mobile Rechable Timer	3840-11040 s (~T3212)	2040 -11040 s
Implicit Detach Timer	0 - 3600 s	0 - 180000 s

*Recommended to be reduced, application depended.

GPRS Radio Network Configuration

Part 6: EGPRS Radio Network Enhancements in R9.1

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

Main (E)-GPRS-related Improvements

- Up to 64 RPPs per PCU
- Allocation of up to 8 PDTCH within PSET
- Support for CS-3 & CS-4 including Link Adaptation Method
- EGPRS or EDGE support including two Link Quality Methods
- Improved polling mechanism

GPRS/EGPRS enhancement to 8 TS

R9.1 offers up to 8 Time Slots per user

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

EDGE releases voice or data capacity

Standard GSM Transceiver

GPRS Coding schemes 3&4

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

GPRS Link Adaptation

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration

ERICSSON EGPRS Coding Schemes

GPRS Performance and Dimensioning Workshop – GPRS Radio Network Configuration